The Border Collision Normal Form with Stochastic Switching Surface

نویسنده

  • Paul Glendinning
چکیده

The deterministic border collision normal form describes the bifurcations of a discrete time dynamical system as a fixed point moves across the switching surface with changing parameter. If the position of the switching surface varies randomly, but within some bounded region, we give conditions which imply that the attractor close to the bifurcation point is the attractor of an Iterated Function System. The proof uses an equivalent metric to the Euclidean metric because the functions involved are never contractions in the Euclidean metric. If the conditions do not hold then a range of possibilities may be realized, including local instability, and some examples are investigated numerically. PACS: 05.40.-a, 05.45.-a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grazing-sliding bifurcations, the border collision normal form, and the curse of dimensionality for nonsmooth bifurcation theory

In this paper we show that the border collision normal form of continuous but non-differentiable discrete time maps is affected by a curse of dimensionality: it is impossible to reduce the study of the general case to low dimensions, since in every dimension the bifurcation produces fundamentally different attractors (contrary to the case of smooth systems). In particular we show that the n-dim...

متن کامل

Border collision bifurcations in two-dimensional piecewise smooth maps

Recent investigations on the bifurcations in switching circuits have shown that many atypical bifurcations can occur in piecewise smooth maps that cannot be classified among the generic cases like saddle-node, pitchfork, or Hopf bifurcations occurring in smooth maps. In this paper we first present experimental results to establish the need for the development of a theoretical framework and clas...

متن کامل

Arnol'd Tongues Arising from a Grazing-Sliding Bifurcation

The Nĕımark-Sacker bifurcation, or Hopf bifurcation for maps, is a well-known bifurcation for smooth dynamical systems. At a Nĕımark-Sacker bifurcation a periodic orbit loses stability and, except for certain so-called strong resonances, an invariant torus is born; the dynamics on the torus can be either quasi-periodic or phase locked, which is organized by Arnol′d tongues in parameter space. I...

متن کامل

Bifurcations in Two-dimensional Piecewise Smooth Maps | Theory and Applications in Switching Circuits

Recent investigations on the bifurcation behavior of power electronic dc-dc converters has revealed that most of the observed bifurcations do not belong to generic classes like saddle-node, period doubling or Hopf bifurcations. Since these systems yield piecewise smooth maps under stroboscopic sampling, a new class of bifurcations occur in such systems when a xed point crosses the \border" betw...

متن کامل

Sequences of Periodic Solutions and Infinitely Many Coexisting Attractors in the Border-Collision Normal Form

The border-collision normal form is a piecewise-linear continuous map on R N that describes dynamics near border-collision bifurcations of nonsmooth maps. This paper studies a codimension-three scenario at which the border-collision normal form with N = 2 exhibits infinitely many attracting periodic solutions. In this scenario there is a saddle-type periodic solution with branches of stable and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014